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Modeling and Simulation

• Modeling and simulation on socio-economic problems
• Commerce, disaster management, defense

• Theories on modeling and simulation

Urban Evacuation with ABM

SIMULATION, 2014

Descriptive-Prescriptive ABM with intelligent behaviors

IEEE T-SMC, Accepted

Emergency medical service with ABM

IEEE T-SMC, 2018

Discrete Event Simulation 

Engine Optimization

ACM TOMACS, 2016

LDEF Formalism: 

Formalism on ABM

IEEE T-SMC, 2016
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Artificial Intelligence

• Modeling and analyzing on socio-economic problems
• With Probabilistic Graphical Model and Deep Generative Model

• Theories on neural network learning and deep generative models

Guided hierarchical topic model, IEEE T-KDE, 2017

GAN-regularized, Ladder Variational

Autoencoder for Collaborative 

Filtering, CIKM 2017

Adversarial Dropout for CNN/RNN,

AAAI 2018, AAAI 2019

Neural Ideology Point 

Estimation Network 

for Law-Makers, AAAI 2018

Bayesian Nonparametric

Collaborative Topic Poisson Factorization

For National Health-Care, IJCAI 2016
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SIMULATION 

AS GENERATIVE MODEL
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Simulation as Data Generation

density 58% density 61%

<Fire Burning Model>

Simulation executes

Models with 

Input Conditions + Parameters

to generate Output Distribution
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Statistical Model and Stochastic Simulation
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Generative Model in Two Directions

• Simulation expects to generate a realistic virtual output

• Validation ensures the realism of the generated output

• Not all variables in the simulation models are known

• Some variables are selected by domain experts or modelers

𝑧 𝑃𝜃(𝐷|𝑧)

Forward Path of Data Generation

Backward Path of Parameter Inference
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SIMULATION CALIBRATION
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Simulation Validation and Calibration

• Validation requires 

• Realistic input scenario, which can be obtained from past data

• Realistic simulation model, which can be designed by domain experts

• Realistic simulation parameters

• Some parameters are introduced by abstraction

• Real world abstraction inevitably introduces approximations on parameters

• How to well approximate parameters == Calibration

Real world 

input

Real world 

output

Real world 

system

Simulation 

system

Simulated 

output

Simulation 

input

Scenario

Geneation
Simulation

Modeling

Output

Validation

Virtual experiments

Parameter

Calibration



Copyright ©  2018 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST 11

Concent of Calibration and Validation

Simulation

Model
Input

Scenario, 𝑰

𝒫∗𝒫+

Simulation

Parameters𝓜(𝓟+;𝔀𝒓, 𝑰) 𝓜(𝓟∗;𝔀𝒓, 𝑰)

𝔀𝒓 ∈ 𝛀

Output(5) Output(19) Output(5) Output(19)

Prob.
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Formal Description of Calibration

Simulation

Model, 𝓜
Input

Scenario, 𝑰

Simulation

Parameters, 𝒫+

𝔀𝒓 ∈ 𝛀

𝒫∗ = argmin
𝒫

𝑑 𝐸𝑅 𝒮 ℳ 𝒫;𝓌𝑟 , 𝐼 , 𝒟

Single Simulation Exec.

Summary Statistics from Single Run

Replication for Expected Values

Real

World

Validation

Target

Deviation

Function

i.e. MAPE,

MSE,

Likelihood

Modeler?

Domain Experts?

Users?

OR

Machine Learning

Model?
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CALIBRATION FRAMEWORK

AND PROCEDURE
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Calibration Procedure

1. Set the summary statistics

1. Collect validation data 𝒟

2. Set the summary statistics function 𝒮

2. Select the simulation performance measure 𝑑

1. 𝑑 could be a likelihood, MAPE, MSE, etc.

3. Optimize the simulation parameter

1. Static Calibration: 𝒫∗ = argmin
𝒫

𝑑 𝐸𝑅 𝒮 ℳ 𝒫;𝓌𝑟 , 𝐼 , 𝒟

2. Dynamic Calibration: 𝒫𝑑𝑦𝑛
∗ = arg min

𝒫𝑑𝑦𝑛
𝑑𝑑𝑦𝑛 𝐸𝑅 𝒮𝑑𝑦𝑛 ℳ 𝒫𝑑𝑦𝑛;𝓌𝑟 , 𝐼 , 𝒟𝑑𝑦𝑛

3. Heterogeneous Calibration: 𝒫ℎ𝑒𝑡
∗ = argmin

𝒫ℎ𝑒𝑡
𝑑ℎ𝑒𝑡 𝐸𝑅 𝒮ℎ𝑒𝑡 ℳ 𝒫ℎ𝑒𝑡;𝓌𝑟 , 𝐼 , 𝒟ℎ𝑒𝑡

• 𝒫,𝓌𝑟 , 𝐼 by simulation types

• Initial parameter setup, 𝒫

• Dynamic parameter adaptation, 𝒫𝑑𝑦𝑛

• Heterogeneous parameter for instantiated sub-models, 𝒫ℎ𝑒𝑡

i.e. Agent-Based Model

and Simulations
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Concept of Calibration on 𝒫

• Traditional methodology of data-driven calibration on 𝒫

• Response surface methodology

• Response surface model from data

• Gaussian Process, Piece-wise Linear 

Regression, Meta-Modeling…

• Experimental design

• Latin Hypercube, Full Factorial, 

Daguchi method…

• Acquisition function

• Probability of Improvement…

Probability of

Improvement

Response

Model Update

Parameter Value

V
al

id
at
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n
 Q

u
al

it
y

Response Surface

Model
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Overview on Data-Driven Simulation Calibration

Dynamic Calibration: 𝓟𝒅𝒚𝒏
∗

Heterogeneous Calibration: 𝒫ℎ𝑒𝑡
∗

1. Preprocessing before

simulation runs

2. Simulation run and 

calculate divergence

3. Parameter calibration 

with ML
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Concept of Calibration on 𝒫𝑑𝑦𝑛
• 𝒫𝑑𝑦𝑛 assumes parameter to be varied by 𝑡

• 𝑡 ∈ [1. . 𝑇] requires too much separate 
setting

• Pseudo Code

• Divide and Calibrate for cycle 𝐶

• Suggest 𝒫𝑑𝑦𝑛,𝐶 with multiple candidates

• Identify the temporal regime with better 
validation with a candidate

• Selectively update 𝒫𝑑𝑦𝑛,𝐶+1 with well-fitted 

temporal regime

• Regime Detection

• Hidden Markov Model….
Dynamically Changed 

Simulation Parameter
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Sample Case of Temporal Regime Detection

Two simulation outputs

𝑑 𝐸𝑅 𝒮 ℳ 𝒫;𝓌𝑟 , 𝐼 , 𝒟

→ 2D Temporal Data
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Matching Well-Fitted Regime and 𝒫𝑑𝑦𝑛

𝒫𝑑𝑦𝑛 update over the cycle, C

𝓜 𝓟𝒅𝒚𝒏,𝑪
𝟏 ;𝔀𝒓, 𝑰

𝓜 𝓟𝒅𝒚𝒏,𝑪
𝟐 ;𝔀𝒓, 𝑰

𝓟𝒅𝒚𝒏,𝑪+𝟏

Update Cycle, C

𝑑
𝐸
𝑅
𝒮
ℳ

𝒫
;𝓌

𝑟
,𝐼

,𝒟
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Concept of Calibration on 𝒫ℎ𝑒𝑡

• 𝒫ℎ𝑒𝑡 assumes parameter to be varied by agents

• 𝑖 ∈ [1. . 𝑁] requires too much separate setting

• Pseudo Code

• Clustering with agent demographics

• Calibrate for cycle 𝐶
• For each agent cluster, 𝑖

• Update response surface curve by Gaussian Process

• Suggest 𝒫ℎ𝑒𝑡,𝐶+1
𝑖 with expected improvement acquisition function on GP

• Agent Cluster Detection

• Variational Autoencoder, Gaussian Mixture Model, Gaussian Process…
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Agent Embedding with VAE

• Agent demographic information can be high-dimensional

• Need to embed the agent information into the low dimensions

• Use Autoencoder, and we use the variational autoencoder (VAE)

• Clustering requires further operation by Gaussian Mixture Model

Probabilistic encoder Probabilistic decoder

Hidden

𝒑𝜽 𝑨𝒈𝒆𝒏𝒕𝒊𝒏𝒇𝒐 𝑯𝒒𝝓 𝑯 𝑨𝒈𝒆𝒏𝒕𝒊𝒏𝒇𝒐
h1

h2

A single point == A sampled agent 

demographics to simulate
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Agent Clustering with GMM

• Low dimension agent demographics embedding

• Closeness between two embedded points== similarity between two agents

• Use clustering algorithm to finalize agent clusters

• We use the Gaussian Mixture Model (GMM)

Gaussian 

Shaped 

Cluster
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Response Surface for Each Agent Cluster

Response surface learning with Gaussian Process

• Multiple cycle of calibration iterations

• Multiple points of < 𝑑ℎ𝑒𝑡 𝐸𝑅 𝒮ℎ𝑒𝑡 ℳ 𝒫ℎ𝑒𝑡;𝓌𝑟 , 𝐼 , 𝒟ℎ𝑒𝑡 , 𝒫ℎ𝑒𝑡,𝐶
𝑖 >

• Gaussian Process approximation on the collection of parameter points

• Acquisition functions with expected improvement 
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Highlighted on Data-Driven Simulation Calibration
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Pseudo Code of Data-Drive Sim. Calibration
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EXPERIMENTS
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Test Case 1

• [Model Description] Wealth Distribution ABM

• Sugarscape Model

• Agent seek wealth to maximize the wealth savings

• Grid provides its wealth to the agents located at the grid

• Agent consumes the wealth
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Ablation Study – Calibrated Dynamic Parameter

• Dynamic calibration finds a dynamic parameter by regime to avoid 
overfitting. 

• Red line is the synthetic parameter 

• Blue line is the estimated dynamic parameter.

• Random Search finds an overfitted dynamic parameter, which only fits the 
given validation data without matching with the given synthetic parameter.
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Ablation Study – Error Plots of Dynamic Calibration

• (a) Parameter Mean Absolute Error of dynamic calibration

• Parameter generation methods Sampling by Regime and Mode Selection 

find parameters closer to the synthetic parameter than the other methods. 

• (b) Dynamic calibration simulation error

• Parameter generation method Sampling by Time performs the best in terms 

of simulation MAPE.
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Ablation Study – Calibrated Heterogeneous Parameter

• (a) Parameter Euclidean Error of Heterogeneous calibration

• (b) Heterogeneous calibration simulation MAPE

• Suggested Bayesian optimization converges to the optimal lower bound, 

which is not 0 because of the stochasticity.
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Calibration Framework Simulation Error

• The suggested calibration framework simulation MAPE

• Four cycles of the calibration framework is replicated

• Each cycle includes 

• Dynamic calibration for the first 20 iterations

• Heterogeneous calibration for the next 30 iterations.
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Test Case 2

• [Model Description] Real Estate Market Agent-based Model

• Agent buy and sell/lease either house/apartment/condo

• House price is increased when the same typed houses are popular

• House price is decreased if the house is not sold, while the house is listed in the housing 

market

• Housing Transaction Number

• Market Participation Rate

• Willing to Pay

• Purchase Rate

• Housing Price

• Market Price Increase Rate

• Market Price Decrease Rate

[Heterogeneity] Household investment portfolio is modeled in the 

heterogeneous parameter

[Dynamic] Demand change due to the up and down of the economic trends 

is modeled in the dynamic parameter
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Summary Statistics
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Calibrated Apartment Transaction Numbers
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Calibrated Apartment Transaction Numbers
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Calibration Framework Simulation Error

• Suggested calibration framework simulation MAPE

• Blue line is a experimental result where the calibration framework is 

executed with 𝐶𝑑𝑦𝑛 = 20 and 𝐶ℎ𝑒𝑡 = 30. 

• Red line is a random search experimental result. 

• Dotted line is the human calibration result.
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Lessons Learned

• We propose the new calibration framework, using Dynamic Calibration, 
and Heterogeneous Calibration.

• Dynamic Calibration estimates an optimal set of dynamic parameters, using 
two components

• Heterogeneous Calibration estimates an optimal set of heterogeneous 
parameters using three components

𝑧 𝑃𝜃(𝐷|𝑧)

Forward Path of Data Generation

Backward Path of Parameter Inference

Generative Model
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