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Modeling and Simulation i in
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Modeling and simulation on socio-economic problems
Commerce, disaster management, defense
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Artificial Intelligence
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Modeling and analyzing on socio-economic problems
+ With Probabilistic Graphical Model and Deep Generative Model
« Theories on neural network learning and deep generative models
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SIMULATION
AS GENERATIVE MODEL
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Simulation as Data Generation ' ‘l

<Fire Burning Model>

What is a stochastic simulation? density 58% density 61%
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Boundary Internal
conditions | /T stochastic
Parameters | \ processes _
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..................................... O Sobs
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q% Models with

i Input Conditions + Parameters
Output value D to generate Output Distribution
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Statistical Model and Stochastic Slmulatlcﬁ'l‘l

KAIST
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Generative Model in Two Directions "I

Simulation expects to generate a realistic virtual output
Validation ensures the realism of the generated output

Not all variables in the simulation models are known
Some variables are selected by domain experts or modelers

%\X Forward Path of Data Generation

Hidden,
or Latent, Generative Model P D 7 Obse-rved
Variable Z v With parameters 6 0 ( | ) Variable

)
[ ] al
e T T T T L L L

Backward Path of Parameter Inference ‘%

KAIST Copyright © 2018 by I1I-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST




SIMULATION CALIBRATION
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Simulation Validation and Calibration

Real world Real world ‘ Real world
input system output
Scenario Simulation Parameter Output
Geneation Modeling Calibration Validation

Simulation Simulation ‘ Simulated
input system output
Virtual experiments

- Validation requires
 Realistic input scenario, which can be obtained from past data
+ Realistic simulation model, which can be designed by domain experts

+ Realistic simulation parameters
- Some parameters are introduced by abstraction
- Real world abstraction inevitably introduces approximations on parameters
- How to well approximate parameters == Calibration
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Concent of Calibration and Validation "l
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Formal Description of Calibration "l

P* = arg min d(ER [S(MCP; w,, 1))], 1))
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CALIBRATION FRAMEWORK
AND PROCEDURE

Copyright © 2018 by II-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST



Calibration Procedure

* P, w1 by simulation types i.e. Agent-Based Model
- Initial parameter setup, P and Simulations

* Dynamic parameter adaptation, P;,,,

* Heterogeneous parameter for instantiated sub-models, 7,

1. Setthe summary statistics
1. Collect validation data D
2. Set the summary statistics function §

2. Select the simulation performance measure d
1. d could be a likelihood, MAPE, MSE, etc.

3. Optimize the simulation parameter
1. Static Calibration: P* = arg min d(Eg|S (M (P; w, D)], D)

2. Dynamic Calibration: 2;,,, = arg min day, (Er [Sayn (M (Payn; 17 1))|, Dayn )
den

3. Heterogeneous Calibration: »7;,, = arg min dhet (Er[Snet (M (Pres; wir, D), Dhet)
het
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Concept of Calibration on P ' ‘|

- Traditional methodology of data-driven calibration on P

* Response surface methodology Rl Probability of

- Response surface model from data Model Update Improvement

- Gaussian Process, Piece-wise Linear
Regression, Meta-Modeling...

+ Experimental design
+ Latin Hypercube, Full Factorial,

D"’_‘g_”_Ch' metho_d... Response Surface
 Acquisition function Mode

* Probability of Improvement...
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Overview on

AT

Initial Setting Data

1. Preprocessing before
simulation runs

Collected Empirical
Validation Data

Preprocessing
Validation Data

Simulation

M

Scenario Data

84,8444

Agent Level Summary
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Agent-based

Model Calibrated -

Parameters P
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Agent Clustering
Process

(Variational
Autoencoder &
Mixture Models)

v

Automatic Clustering
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New

i
:den,ﬂ'+1

Parameter
Calibration
Cycle

Parameter
Generation Process

(Latent Parameter <
Distribution Fitting)

Yalidation Data D

- Total Approve
s
-

Data-Driven Simulation Calibration' ‘l

APPLIED ARTIFICIAL INTELLIGENCE LAB

2. Simulation run and
calculate divergence

Slmulatlon Summary Statlstlcs s

5° KFW

. l«TI-I

v v

Simulation Performance Error
— Realy,|

—— Dynamic Calibration: #;,

)

Regime Detec
Process

New

Phetc+1

KAIST

Parameter
Generation Process

(Bayesian <
Optimization)

3. Parameter calibration

(Hidden Mar .
Model) with ML
Predicting Response Hetferoggneous
Surface Process Calibration

(Gaussian Process
Regression)

— Heterogeneous Calibration: 7y, —
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Concept of Calibration on

* Payn @Ssumes parameter to be varied by t
* t € [1..T] requires too much separate =
setting
* Pseudo Code
 Divide and Calibrate for cycle C
Suggest Py,,,, ¢ With multiple candidates

ldentify the temporal regime with better
validation with a candidate

Selectively update Py, ¢+, With well-fitted
temporal regime

* Regime Detection
* Hidden Markov Model....

Dynamically Changed
Simulation Parameter

=
n

=

=
T

Number of moved agents:
© o :

o n

Number of moved agents:

10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Simulation Time Simulation Time

Qa
(4, 5
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Sample Case of Temporal Regime Detection "I

Output Result Distribution from Exp Case :3 with30 reps.
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Matching Well-Fitted Regime and 2 .., Vi

APPLIED ARTIFICIAL INTELLIGENCE LAB

3
—_ =
an [}
o
©
©
2
— = it 4
Ty T g R TR SR ST R g g
S
Z 2
;-:*‘“S?'“‘*"-\u... -g.*-mqﬁ 2
5 E
< 5 20 25 30 35 40 45 50

== 3%-*"%;&:{;:; WMra 'f.rw;;em-sm;-.-.. | Simulation Time

8
= A A
— _-;'.‘__,';i;;:;‘;: .... % 05k A A J\ ‘ ‘ A
. g o
2 2 .
:"‘I:?ir"\_*": i - iyt 2 o \ / v
T . — J
ST 3
-, . 0 5 10 15 20 25 30 35 40 45 50
N T _.,‘“\: e Simulation Time
TR
T T P T P T T e, e e, T, T M
TR T R T
Payn Update over the cycle, C

KAIST Copyright © 2018 by II-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST



Concept of Calibration on 7,

* Pr aSSUmMes parameter to be varied by agents
* [ € [1..N] requires too much separate setting

* Pseudo Code

- Clustering with agent demographics

- Calibrate for cycle C
For each agent cluster, i

Update response surface curve by Gaussian Process

APPLIED ARTIFICIAL INTELLIGENCE LAB

Suggest ?,"let,cﬂ with expected improvement acquisition function on GP
» Agent Cluster Detection

- Variational Autoencoder, Gaussian Mixture Model Gaussnan Process...

number ses
1. 00 ( 0 00)

living_type_nohouse
0.00 (+0.00)

living_type_lease

ng_typ!
100( 0.00)

house_type_nohouse
0.00 (+0.00)

Cluster 3 time 0

1.00 (:0.00)

savings
8412 (x£13071)

rrrrrrrrrrr

loan
6062 (£7220)

house_type_detached
0.00 (+0.00)

house_type_apt

: 1.00 (£0.00)

house_type_multiplex
0.00 (£0.00)

aaaaaaaaaaaa

Predictive Variance
eeeeeeeeeeeeee
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Agent Embedding with VAE /A

- Agent demographic information can be high-dimensional
* Need to embed the agent information into the low dimensions
- Use Autoencoder, and we use the variational autoencoder (VAE)

» Clustering requires further operation by Gaussian Mixture Model

Probabilistic encoder Probabilistic decoder

A single point == A sampled agent
demographics to simulate
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Agent Clustering with GMM y Vi
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- Low dimension agent demographics embedding
+ Closeness between two embedded points== similarity between two agents
+ Use clustering algorithm to finalize agent clusters
* We use the Gaussian Mixture Model (GMM)

Cluster 3 time 0

region
1.00 (+0.00)

- number_of_houses gs

GaUSSIan 1:0070.00) | 8412 (+13071)
Shaped e | s
Cluster

livin:

g_type_lease loan
0.00 (£0.00) 6062 (+£7220)

living_type_owner house_type_detached
1.00 (£0.00) 0.00 (+0.00)
house_type_nohouse house_type_apt
0.00 (+0.00) : 1.00 (%0.00)
house_type_multiplex
0.00 (+0.00)
Cluster 1 time 0
region
0.55 (+0.50)
umber_of_house: vings
0.00 (£0.04) 4021 (£6908)
0.8
living_type_noho: 06 income_worl

use _work
0.00 (+0.00) 4029 (+3173)

iving_type_lease loan
1.00 (+0.00) 0 (£0)

living_type_owner house_type_detached
0.00 (£0.00) 0.

00 (£0.00)

=75 —30 —25 0 25 50 75 100

house_type_nohouse house_type_apt
0.00 (+0.00) 1.00 (%0.00)

house_type_multiplex
0.00 (+0.00)
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Response Surface for Each Agent Cluster"l

- Multiple cycle of calibration iterations
- Multiple points of < dpe(Eg[Snet (M (Prer; wir, D), Dret ) Phec.c >
+ Gaussian Process approximation on the collection of parameter points
 Acquisition functions with expected improvement

Response surface learning with Gaussian Process

: & Contour Plot of Function Approximation based on Contour Plot of Function Approximation based on
Contour Plot of Function Approximation based on 50 Number of Funce:i%n Evaitations 100 Number of Function Evaluations




Highlighted on Data-Driven Simulation Calibration

i
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e ™
New . : :
pi Parameter Regime Detection Dynamic
dyn,C+1| Generation Process Process Calibration
(Latent Parameter (Hidden Markov
Distribution Fitting) Model)
New .
P Parameter Predicting Response BT
het,C+1] Generation Process Surface Process Calibration
(Bayesian (Gaussian Process
Optimization) Regression)
. Automatic Parameter Calibration y
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Pseudo Code of Data-Drive Sim. Calibration ' ‘I

APPLIED ARTIFICIAL INTELLIGENCE LAB

Algorithm 1: Calibration Framework Algorithm

input : Input parameter combination P = P U Pin

dyn het
e (el : : out __ out out
output: Calibrated parameter combination P°%" = 'den UPL,
1 Function CaliprationFramework(Pé;n U Pﬂ’;t :
J— T
2 denso — "dyn _ _
3 Phet,0=AgentClustering(Pg U P;7;) (see Algorithm 3)
4 for ¢ in range(Ceqr) do
5 if 0< e~ | 5r—=5—|(Cayn + Chet) < Cayn then
6 Payn,c+1=DYNAMICCALIBRATION(Pgyr c U Phet,c) (see Algorithm 2)
7 Phet,c—!—l - Phet,c
8 else if Cgy,, <c— [m] (Cayn + Chet) < Cayn + Chet then
9 Phet,c+1=HETEROGENEOUSCALIBRATION(Pgiyn c U Phet,c) (see Algorithm 3)
10 L den,c—l—l = den,c
11 Set Pout — 35:; U Pzgi to have the lowest simulation error
t t
12| return Pg;‘n U PRy
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EXPERIMENTS
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Test Case 1

» [Model Description] Wealth Distribution ABM
» Sugarscape Model
- Agent seek wealth to maximize the wealth savings
+ Grid provides its wealth to the agents located at the grid
- Agent consumes the wealth

p Parameter Parameter Synthetic Parameter Setting
arameters
Type Range Value Time or Cluster
Wealth Income | Dynamic 0-2 1.5 1-10,21-30,41-50
0.5 11-20,31-40

Wealth  Con- | Heterogeneous 0-1 0.9 Top 50% in Initial Wealth

sumption 0.1 Bottom 50% in Initial Wealth
Type of Sum- | Name of Summary Statistics Variable Description

mary Statistics

Hicu Crass WEALTH AVERAGE | Average wealth of top 1/3 agents

Validation MippLE CLass WEALTH AVER- | Average wealth of middle 1/3 agents
Summary AGE
Statistics

Low Crass WEALTH AVERACE | Average wealth of bottom 1/3 agents

GINI INDEX The area ratio of the Lorenz curve to measure the
wealth inequality
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Ablation Study — Calibrated Dynamic Parameter"l

(a) _ (b)
Mode Selection Random Search
2.00 2.00
—— Estimated Parameter —— Random Search

175 4 —— Synthetic Parameter 1.75 4 —— Synthetic Parameter
1.50 _T 1.50

$125 $125 H

(] (]

> >

% 1.00 % 1.00 \

£ £

L L

& 0.75 1 & 0.75 1 \/ \
0.50 A —_— _—1 0.50 A I\
0.25 4 0.25 / \ \ )

0.00

0.00 T . T T T . T T T . . .
0 10 20 30 40 50 0 10 20 30 40 50
Simulation Timestep Simulation Timestep

- Dynamic calibration finds a dynamic parameter by regime to avoid
overfitting.

* Red line is the synthetic parameter
* Blue line is the estimated dynamic parameter.

- Random Search finds an overfitted dynamic parameter, which only fits the
given validation data without matching with the given synthetic parameter.
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Ablation Study — Error Plots of Dynamic Calibration ' ‘.

(a) (b)

Dynamic Calibration Parameter Mean Absolute Error Dynamic Calibration Simulation Error
0.10
07 —— Random Search —— Random Search
' —— Mode Selection —— Mode Selection
Sampling by Regime Sampling by Regime
—— Sampling by Time 0.08 1 —— Sampling by Time

=== Error evaluated with Synthetic Parameter

o
(=]
1

0.06

Best MAPE Error

IS )
.

Best Parameter Error
[=}
wn

0.4
0.3 1
L] L] T T T I 0-00 L] I Ll L T T
0 20 40 60 80 100 0 20 40 60 80 100
Calibration Iterations Calibration Iterations

+ (a) Parameter Mean Absolute Error of dynamic calibration

- Parameter generation methods Sampling by Regime and Mode Selection
find parameters closer to the synthetic parameter than the other methods.

* (b) Dynamic calibration simulation error

- Parameter generation method Sampling by Time performs the best in terms
of simulation MAPE.
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Ablation Study — Calibrated Heterogeneous Parameter ' ‘.

(a)

Best Parameter Error

KAIST

(b)
0.10 Heterogeneous Calibration Parameter Euclidean Error 0.10 Heterogeneous Calibration Simulation Error
—— Random Search —— Random Search
—— Bayesian Optimization —— Bayesian Optimization
—=~ Error evaluated with Synthetic Parameter

0.08 4 0.08

S
0.06 Y 0.06

o

o

S

E
0.04 A J‘-"‘__ 0.04 4

wr

L)

m
0.02 4 0.02 4
0100 T I T L T I 0100 L] I T L T I

0 20 40 60 80 100 0 20 40 60 80 100
Calibration Iterations Calibration Iterations

(a) Parameter Euclidean Error of Heterogeneous calibration

(b) Heterogeneous calibration simulation MAPE

+ Suggested Bayesian optimization converges to the optimal lower bound,
which is not O because of the stochasticity.
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Calibration Framework Simulation Error"l

Calibration Framework Simulation Error
0.20

—— Random Search
0.18 - —— Calibration Framework

0.16 4
0.14 4

0.12

Best Simulation Error

0.10 4

0.08 +

0.06

0.04

L:l 2|5 SID ?IS 160 1ﬁ5 1,'%0 17I'5 ECIJO
Calibration Iterations

* The suggested calibration framework simulation MAPE

 Four cycles of the calibration framework is replicated

Each cycle includes
Dynamic calibration for the first 20 iterations
Heterogeneous calibration for the next 30 iterations.
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Test Case 2 "'

+ [Model Description] Real Estate Market Agent-based Model
+ Agent buy and sell/lease either house/apartment/condo
* House price is increased when the same typed houses are popular

* House price is decreased if the house is not sold, while the house is listed in the housing
market

* Housing Transaction Number

VUL CEWTCIEUIRREIENY [Dynamic] Demand change due to the up and down of the economic trends
* Willing to Pay is modeled in the dynamic parameter

* Purchase Rate

_ _ [Heterogeneity] Household investment portfolio is modeled in the
* Housing Price heterogeneous parameter

« Market Price Increase Rate

+ Market Price Decrease Rate

Parameter Parameter Type Parameter Range
Market Participation Rate Dynamic 0-0.05

Market Price Increase Rate Dynamic 0-0.1

Market Price Decrease Rate Dynamic 0-0.1

Willing to Pay Heterogeneous 0.3-0.9

Purchase Rate Heterogeneous 0.3-0.9
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Summary Statistics

APPLIED ARTIFICIAL INTELLIGENCE LAB

Types of Sum-
mary Statistics

Name of Summary Statistics

Variable Description

Variable Value

Validation-
level Summary
Statistics

APARTMENT SALES PRICE INDEX IN CAPITAL

APARTMENT SALES PRICE INDEX IN NONCAPITAL

Jevons price index of
Apartment sales price

APARTMENT LEASE PRICE INDEX IN CAPITAL

APARTMENT LEASE PricE INDEX IN NONCAPITAL

Jevons price index of
Apartment lease price.

Housing Price is con-
verted into a percent-
age, with base value
as 100 at the initial
timestep.

APARTMENT SALES TRANSACTION NUMBER IN CAPITAL

APARTMENT SALES TRANSACTION NUMBER IN NON-
CAPITAL

Transaction numbers
of Apartment sales.

APARTMENT LEASE TRANSACTION NUMBER IN CAPITAL

APARTMENT LEASE TRANSACTION NUMBER IN NON-
CAPITAL

Transaction numbers
of Apartment lease.

Simulation transaction
number is scaled up
to be compatible with
the validation transac-
tion number.

Agent-level
Summary
Statistics

Livineg REGION

Agent living re-
gion between capi-
tal /noncapital area.

1: Capital, 0: Noncapi-
tal

SAVINGS Total savings. 1 unit/1000 KRW
INCOME Sum of the labor in- | 1 unit/1000 KRW
come and transfer in-
come.
Loan Total amount of money | 1 unit/1000 KRW

agent have borrowed
from bank.

HouseE TyPE

Type of house where an
agent lives.

1: Detached House, 2:
Apartment, 3: Mul-
tiplex House, 4: No
House

Lving TYPE

Type of living where an
agent lives

1: Owner, 2: Lease, 3:
No House

NUMBER OF OWN HOUSES

Number of Thouses

agent owns

1 unit/1 House

KAIST
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Calibrated Apartment Transaction Numbéféd i

KAIST

Transaction Number

Transaction Number

Apartment Sales Transaction Number in Capital

70000 -
60000
50000 -
40000 A 2
30000 1 w\/\ >"/\"'"'\\
—— Validation
20000 1 ——— Human Calibration
—— Dynamic Calibration
10000 —— Heterogeneous Calibration
Calibration Framework with Cgyn = 20, Cher = 30
0 5 10 15 20
Simulation Time
Apartment Lease Transaction Number in Capital
60000 -
50000 -
40000 1
30000 -+
20000 1 — Validation
~——— Hurnan Calibration
—— Dynamic Calibration
1 -
0000 —— Heterogeneous Calibration
Calibration Framework with Cgyn = 20, Cper = 30
0 : 10 15 20

Simulation Time

Transaction Number

Transaction Number

APPLIED ARTIFICIAL INTELL

Apartment Sales Transaction Number in Noncapital

60000 4

50000 A

40000 +

30000 A
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Calibration Framework Simulation Error
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» Suggested calibration framework simulation MAPE

- Blue line is a experimental result where the calibration framework is
executed with Cyy, = 20 and Cp,r = 30.

* Red line is a random search experimental result.
+ Dotted line is the human calibration result.
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We propose the new calibration framework, using Dynamic Calibration,
and Heterogeneous Calibration.

Dynamic Calibration estimates an optimal set of dynamic parameters, using
two components

Heterogeneous Calibration estimates an optimal set of heterogeneous
parameters using three components
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